Voir en

français

First 3D printing of crucial component to bring accelerators closer to society

The first additive manufacturing of a critical accelerator component paves the way for more affordable and versatile particle accelerators.

|

Radio Frequency Quadrupole (RFQ) made from pure copper using additive manufacturing
Radiofrequency quadrupole (RFQ) modules are traditionally manufactured through a long series of machining, thermal treatment and brazing steps. Additive manufacturing would help streamline several operations. (Image: CERN)

Besides high-energy physics, particle accelerators play a crucial role in cancer therapy and material analysis and hold the potential for ambitious environment and energy applications. However, their size and manufacturing cost are often obstacles to their use outside of physics laboratories. Among other innovations, additive manufacturing, also known as 3D printing, could be part of the solution to make particle accelerators more readily available to society.

As part of the EU-funded I.FAST project, which aims to develop and enhance leadership in particle accelerators in Europe, the German high-tech company TRUMPF has for the first time additively manufactured a core component of future particle accelerators – a radiofrequency quadrupole (RFQ). RFQs are among the most complex components of linear particle accelerators and are critical to providing the energy necessary to accelerate the particle beam ever closer to the speed of light. The 3D-printed RFQ will be shown at the leading 3D-printing trade show Formnext in Frankfurt this November.

“Additive manufacturing can help reduce the size and cost of accelerators, shorten their construction time and enhance their performance. Used at a wider scale, additive manufacturing could make accelerators more affordable for use outside of large scientific laboratories, such as in hospitals for isotope production and cancer treatment, in airports for cargo screening or in laboratories for industrial analysis,” explains CERN’s Maurizio Vretenar, I.FAST project coordinator. “Over 30 000 accelerators are currently in use worldwide, the vast majority of them in healthcare and industry.”

The I.FAST team of experts from CERN, Politecnico di Milano, CNRS-IN2P3, Fraunhofer IWS and RTU designed the RFQ specifically for a TRUMPF 3D printer that relies on a highly energetic green laser beam. The successful “printing” of such a critical component in one piece of metal only is a technological milestone in itself. “This is proof that large copper components can be manufactured additively with sufficient precision thanks to our green laser beam, which can print even the finest copper structures. High-precision parts like the RFQ can be manufactured faster, cheaper and more energy-efficiently,” says Michael Thielmann, additive manufacturing expert at TRUMPF.

Additive manufacturing belongs to the portfolio of advanced technologies currently being explored by I.FAST. “I have no doubt that the accelerator community will increasingly rely on additively manufactured components when designing and building new facilities,” concludes Toms Torims, researcher at Riga Technical University (RTU) and I.FAST Work Package coordinator for advanced accelerator technologies.