Voir en


CERN Council reviews progress of feasibility study for a next-generation collider

At its half-way mark, a study investigating the feasibility of a 91-kilometre Future Circular Collider to potentially follow the Large Hadron Collider at CERN shows significant progress

Diagram illustrating a potential placement scenario for the FCC underground tunnel

Diagram illustrating a potential placement scenario for the FCC underground tunnel (Image: CERN)

After three years of work, mobilising the expertise of scientists and engineers around the world, the Feasibility Study for the Future Circular Collider (FCC) - a particle collider with a circumference of 90.7 km that could potentially succeed the High-Luminosity LHC in the mid-2040s – has now reached the half-way mark. The Feasibility Study is expected to be completed in 2025.

The CERN Council reviewed the work undertaken in a fruitful meeting on 2 February 2024. It congratulated and thanked all the teams involved in the study for the excellent and significant work done so far and for the impressive progress, and looks forward to receiving the final report in 2025.

Particle colliders have played a crucial role in elucidating the fundamental laws of nature and constituents of matter. The Feasibility Study for the FCC was launched in response to a recommendation from the 2020 update of the European Strategy for Particle Physics, whereby Europe, in collaboration with the worldwide community, should undertake a technical and financial feasibility study for a next-generation hadron collider at the highest achievable energy, with an electron-positron collider as a possible first stage.

If approved by CERN’s Member States in the coming years, the construction of the first stage, an electron-positron collider (FCC-ee), could start in the early 2030s and operate in the mid-2040s. The facility would operate for some 15 years, during which time the high-field magnet technology needed for the second stage, a proton-proton collider operating at an unprecedented collision energy of around 100 TeV (FCC-hh), could be developed and industrialised.

Accelerator, detector, and physics studies continue within the global FCC collaboration, spanning 150 institutes in 30 countries.

Relevant links: